Free Radical Addition to Olefins. Part XVIII.† Addition of Chloroiodoand Di-iodo-methane to Fluoroalkenes

By Norman McMurray, John M. Tedder, Luc L. T. Vertommen, and John C. Walton,* Department of Chemistry, The University, St. Andrews, Fife KY16 9ST

The free-radical addition of chloroiodo- and di-iodo-methane to ethylene, vinyl fluoride, 1,1-difluoroethylene, trifluoroethylene, tetrafluoroethylene, and hexafluoropropene, has been investigated in sealed-tube experiments employing di-t-butyl peroxide as initiator. The main reaction products were 1:1 adducts derived from chloromethyl and iodomethyl radicals respectively. The addition of bromotrichloromethane to hexafluoropropene has been examined under similar experimental conditions. The relative rates of addition of chloromethyl radicals to the alkenes, and the orientation ratios for the unsymmetrical alkenes have been estimated. It is shown that the orientation of radical addition can be successfully accommodated within the 'Patterns of Reactivity' scheme developed for polymer radical reactions.

THE peroxide initiated addition of bromoform to to a series of fluoroalkenes in order to determine if they fluoroalkenes at temperatures of $ca. 150^{\circ}$ leads to products also act as dual radical sources. Another primary derived from tribromomethyl and dibromomethyl objective of the study was to obtain orientation data for radicals.¹ Similarly the photolysis of bromodichloro- chloro- and iodo-methyl radicals with unsymmetrical

methane yields products derived from dichloromethyl olefins. This type of information is scarce for less

Relative yields a of products from reactions of CH ₂ ClI with fluoroalkenes at 150°							
Alkene E	Me ₂ CO	$CH_{3}I$	CICH ₂ CH ₂ Cl	ClEI	CH ₂ ClEI	CH ₂ ClE'I	Telomer
$CH_2 = CH_2$	_	3.7	1.4	0.3	63.6	-	
$CH_2 = CHF$	7.0	3.3	0.9	0.1	12.5	2.2	
$CH_2 = CF_2$	5.4	3.4	0.2	< 0.1	3.1	0.4	0.6
$CHF=CF_2$	3.5	3.2	0.4	< 0.1	5.4	5.6	2.8
$CF_2 = CF_2$			< 0.1	< 0.1	27.0		11.3 ^b
$CF_{3}CF=CF_{2}$	3.5	3.1	< 0.1	0.1	4.1	0.8	

TABLE 1

Traces of CH₃Cl were formed in all experiments.

"Yields as mol % relative to CH2ClI remaining at end of experiment. "Yields of individual telomers: CH2Cl[CF2CF2],1; $n = 2, 4.1\%; n = 3, 3.5; n = 4, 2.2; n = 5, 0.5; n = 6, 0.1; n = 7, 0.1; H(CF_2CF_2)_2CHCl[CF_2CF_2]_nI; n = 1, 0.6\%; n = 2, 0.2.$

Relative yields of products from reactions of CH₂I₂ with fluoroalkenes at 150° Competition with ethylene No ethylene present CH₂IEI CH₂IE'I Telomer с́н<u>,</u>і*е*і % CH,ICH2CH2I Alkene CH,IE'I Telomer % % % E% % % CH2=CHF 100 52671CH₂=CF₂ CHF=CF₂ 100 10.2100 15719.5 110 10092.7100 267267398 CF₂=CF₂ CF₃CF=CF₂ а a 100 16.533 a Acetone and methyl iodide were produced in all experiments.

TABLE 2

" Main product polymer.

radicals and also bromodichloromethyl radicals.² This dual behaviour is due to competition between hydrogen and halogen transfer in the chain-propagating step, and it is probable that it is general for trihalogenomethanes of the type CHX₂I or CHX₂Br at temperatures above 100°. Hardly any investigations of the free-radical reactions of dihalogenomethanes have been reported,³ and we therefore embarked on a study of the peroxideinitiated addition of chloroiodo- and di-iodo-methane

† Part XVII, J. P. Sloan, J. M. Tedder, and J. C. Walton, J.C.S. Perkin II, 1975, 1846.

¹ D. S. Ashton, D. J. Shand, J. M. Tedder, and J. C. Walton, J.C.S. Perkin II, 1975, 320.

electrophilic radicals and yet it is necessary if a more balanced view of the radical addition reaction with olefins is to be built up.

RESULTS AND DISCUSSION

The relative yields of the main products from the reactions of chloroiodomethane and di-iodomethane with the fluoroalkenes are given in Tables 1 and 2. Di-t-butyl

² J. C. Gibb, J. M. Tedder, and J. C. Walton, J.C.S. Perkin II,

1974, 807. ³ W. E. Hanford and R. M. Joyce, U.S.P. 2,440,800 (Chem. Abs., 1947, 42, 6373).

peroxide decomposes at 150° to give methyl radicals and acetone, and the methyl radicals initiate the reaction by abstracting iodine from the dihalogenomethane [reactions (1)—(3)]. Acetone and methyl iodide should be formed in equal amounts if methyl radicals are only consumed in reaction (1). In fact there was always a slight excess of acetone (see Table 1) suggesting that a small proportion of the methyl radicals take part in other reactions including addition to the alkene and combination.

$$CH_{3} \cdot + CH_{2}XI \longrightarrow CH_{3}I + CH_{2}X \cdot$$
(1)

$$CH_2X \cdot + E \longrightarrow CH_2XE \cdot$$
 (2)

$$CH_{2}XE \cdot + CH_{2}XI \longrightarrow CH_{2}XEI + CH_{2}X \cdot (3)$$
$$E = \text{fluoroalkene}$$

The only chain-carrying radicals were chloromethyl from chloroiodomethane and iodomethyl from di-iodomethane. No adducts derived from other radicals were detected so that hydrogen abstraction from the dihalogenomethane is not competitive with iodine abstraction and neither compound acts as a dual radical source under the conditions of the present experiments. Traces of methyl chloride detected in the reactions with chloroiodomethane indicate that some chlorine abstraction occurs [reaction (4)] but this reaction was of negligible importance compared with iodine abstraction. Another

$$CH_3 \cdot + CH_2 CII \longrightarrow CH_3 CI + CH_2 I \cdot$$
 (4)

minor process gave rise to products of the type ClEI, presumably from addition of traces of chlorine atoms to the fluoroalkenes. The identification of the dimer of chloromethyl radicals in most of the reactions suggests that the main termination process (5) involves combination of this radical:

$$CH_2Cl \cdot + CH_2Cl \cdot \longrightarrow ClCH_2CH_2Cl \qquad (5)$$

The extent of telomer formation increased with increasing fluorine content of the fluoroethylene with both dihalogenomethanes. In the reactions to which ethylene was added, telomer formation increased, cross-telomers of the type CH₂IECH₂CH₂I forming more readily than normal 2:1 telomers, because the adduct radicals CH₂IE. add more rapidly to ethylene than to the fluoroalkene E. An interesting feature of the results was the formation of small yields of telomers of structure H[CF₂CF₂]₂CHCl- $[CF_2CF_2]_n$ from the reaction of chloroiodomethane with tetrafluoroethylene. The mechanism probably involves a 1,5-hydrogen shift by intramolecular hydrogen abstraction in the 2:1 telomer radical (I) giving the rearranged radical (II) which can itself telomerize or react with the dihalogenomethane [reaction (6)]. The first member of this series of telomers (n = 0) was not detected, but since the rearranged products account for <8% of the total products from radical (I), the trace amounts expected for

this telomer were probably below the limits of detection. Chain branching in telomerizations of ethylene has been ascribed to 1,5-hydrogen shifts of this type.^{4,5}

The main products of the reactions were 1:1 adducts of the dihalogenomethane with the fluoroalkene, except in the reaction of di-iodomethane with tetrafluoroethylene which showed extensive polymerization. The orientation ratios O_r can be calculated from the yields of CH₂XEI (initial addition to the least substituted end of the alkene) and $CH_2XE'I$ (initial addition to the most substituted end) [equation (7)]. The orientation ratios

$$O_{\mathbf{r}} = k'_2/k_2 = [CH_2XE'I]_f/[CH_2XEI]_f \qquad (7)$$

obtained for chloro- and iodo-methyl radicals are compared with those for some related radicals in Table 3.

TABLE 3 Orientation of addition of halogenoalkyl radicals to fluoroalkenes at 150°

	CH ₂ =CHF	CH ₂ =CF ₂	CHF=CF ₂	CF2=CFC	F _a .
Radical	O_r	\overline{O}_{r}	O_r	O_r	Ref.
$CH,F \cdot$	0.29	0.45	2.04		1
CH ₂ Cl·	0.18	0.14	1.03	0.19	a
CH_I·		0.10	0.93	0.16	a
CCl_{3} ·	0.070	0.012	0.29	< 0.02	6, b
^a This	work. ^b J. I	M. Tedder	and J. C.	Walton,	Trans.
Faraday	Soc., 1966, 62	, 1859.	•		

The orientation ratios show a uniform decrease along the series of radicals CH2F+, CH2Cl+, CH2I+ for each fluoroalkene. Chloromethyl radicals, like fluoromethyl radicals, show a slight preference for addition to the more substituted end of trifluoroethylene, but iodomethyl radicals show the more usual orientation of preferential addition to the least substituted end. Comparison of the $O_{\rm r}$ values of chloro- and trichloro-methyl radicals shows that the latter, larger, and more electronegative radical is much more selective. The photolytic addition of trichloromethyl radicals to hexafluoropropene in the gas phase gave none of the adduct from the CF₃CF-end, ⁶ whereas CH₂Cl, CH₂I, and CF₃⁷ radicals all show ⁶ J. M. Tedder and J. C. Walton, *Trans. Faraday Soc.*, 1967, 63, 2678. ⁷ R. N. Haszeldine, J. Chem. Soc., 1953, 3559.

⁴ R. Kh. Freidlina, Adv. Free-Radical Chem., 1965, 1, 224; A. B. Terent'ev and R. Kh. Freidlina, Izvest. Akad. Nauk,

<sup>S.S.S.R., Ser khim., 1966, 1854.
⁶ R. Kh. Freidlina, A. B. Terent'ev, M. Ya. Khorlina, and</sup> S. N. Aminov, Zhur. Vsesoyuz Khim. Obshch. Im. D.T. Mendeleeva, 1966, **11**, 211.

1976

appreciable attack at this position. In an effort to detect the reverse adduct from CCl_3 radicals a sealed-tube experiment was carried out with CCl_3Br and hexa-fluoropropene, and the products together with their yields (mol %) relative to the unused CCl_3Br were as follows:

mined independently from polymerization studies, but Bamford and Jenkins have shown that the α value of an olefin is related to its polarity by the approximate empirical equation: $\alpha = -5.3 \sigma$, where σ here refers to the substituent constant of the adduct radical formed from the olefin. The α values calculated from this

If formed the reverse adduct must have been present in ${<}0.1\%$ yield.

The mechanism of the reaction is clearly very similar to that given above; CCl_3 · radicals are the main chain carriers and they add to the alkene and abstract hydrogen from acetone and other compounds. The presence of the dibromide $CF_3CFBrCF_2Br$ suggests that small amounts of bromine atoms are also formed.

The trends in the orientation ratios can be interpreted in terms of steric and polar effects, and the orientation ratios for chloro- and iodo-methyl radicals conform with the correlations of log O_r with radical diameter (d_c) and with radical diameter modified by a polar term $(d_c + 1.0 \sum_{\alpha} \sigma_I)$ described previously.¹ The full range of orientation ratios do not correlate well with the inductive substituent constants of the radicals $\sum_{\alpha} \sigma_{I,}$ ¹ but significant correlations are observed between log O_r and the Taft σ^0 constants of the radicals for the data from each fluoroethylene (and with Hammett σ constants which are virtually identical with σ^0 values for these radicals except for fluorine atoms). The σ^0 constant of a radical is defined as the algebraic sum of the substituent constants of the groups attached to the radical centre.

In the 'Patterns' approach developed by Bamford and Jenkins for interpreting polymer radical reactivities,⁸ the specific velocity constant k_s for a radical reaction is given by equation (8) where $k_{3,T}$ is the rate constant of

$$\log k_{\rm s} = \log k_{\rm 3,T} + \alpha \sigma + \beta \tag{8}$$

the abstraction reaction of the radical with toluene, σ is the substituent constant of the radical, and α and β are constants for a given olefin. A simple extension of this approach in which α , β characterise one end of the olefin

$$\log O_{\rm r} = \log k'_2/k_2 = \sigma (\alpha' - \alpha) + \beta' - \beta \quad (9)$$

and α' , β' characterise the other end leads to expression (9) for the orientation ratio. The values of $\alpha' - \alpha$ and $\beta' - \beta$ were determined from the gradients and intercepts of the plots of log O_r against σ^0 , and are given as 'experimental' results in Table 4. A plot of log O_r against σ^0 ($\alpha' - \alpha$) + $\beta' - \beta$ is shown in the Figure.

Effectively this amounts to a correlation of log O_r against σ^0 , the $\alpha' - \alpha$ and $\beta' - \beta$ values serving to bring the results from the three alkenes into a single straight line the correlation coefficient of which was 0.98. The α and β values of these fluoroalkenes have not been deter-

⁸ C. H. Bamford and A. D. Jenkins, *Trans. Faraday Soc.*, 1963, **59**, 530; A. D. Jenkins, *Adv. Free-Radical Chem.*, 1967, **2**, 139.

expression (see Table 4) are in reasonable agreement with the experimental values.

The 'Patterns' approach developed by Bamford and Jenkins for polymerization in solution can thus be

TABLE 4

Comparison of experimental and calculated olefin reactivity constants

Olefin	$(\beta' - \beta)_{expt}$	$(\alpha' - \alpha)_{expt}$	$(\alpha' - \alpha)_{\text{calc.}}$
CH ₂ =CHF	-0.46	-0.99	-0.90
CH ₂ =CF ₂	-0.25	-2.18	-1.80
CHF=CF ₂	0.44	-1.28	-0.90

adapted to the problem of orientation of radical addition to olefins in the gas phase with considerable success. The correlations indicate that both the polarity of the olefin and the polar character of the radical are important.

Correlation of the logarithms of the orientation ratios with σ^0 constants of the radicals. \bigcirc , trifluoroethylene; \square , vinyl fluoride; \bigoplus , 1,1-difluoroethylene

An attempt was made to measure the relative rates of addition of iodomethyl radicals to the fluoroalkenes by adding ethylene as a competitor to the reaction mixture. Unfortunately this increased the extent of telomerization to such an extent that the results are worthless for kinetic purposes. An estimate of the relative rates of addition of chloromethyl radicals to the alkenes can be obtained by summing the yield of adducts (including both adducts from an unsymmetrical olefin) and telomers for each alkene and comparing this with the corresponding yield for ethylene. The relative rates found in this way are: $CH_2=CH_2$, 1.0; $CH_2=CHF$, 0.2; $CH_2=CF_2$, 0.06; $CHF=CF_2$, 0.2; $CF_2=CF_2$, 0.6; $CF_3CF=CF_2$, 0.08. The relative rates of addition to the fluoroethylenes initially decrease as the number of fluorine substituents in the fluoroethylene increases, and then subsequently increase to tetrafluoroethylene. Iodomethyl radicals also follow the same trend, as Table 2 shows, although no quantification is possible. Similar behaviour has been observed for a variety of halogenoalkyl radicals,¹ and for hydrogen atoms.⁹

EXPERIMENTAL

Materials.—Chloroiodomethane was prepared by refluxing CH_2Cl_2 with KI in acetone for three weeks. The product was distilled and purified by preparative g.l.c. to give material of >99.6% purity. Di-iodo- and bromotrichloromethane were commercial materials redistilled before use. Di-t-butyl peroxide was washed with iron(II) sulphate, several times with water, and distilled under reduced pressure. The fluoroalkenes were commercial materials, dried and trap-to-trap distilled and degassed before use; g.l.c. showed no impurities.

Method.—Materials were handled on a conventional vacuum line. Measured amounts of the polyhalogenomethane, di-t-butyl peroxide, and the appropriate alkene were distilled into a thick Pyrex tube (ca. 100 ml) and thoroughly degassed. The tube was sealed under vacuum and transferred to a furnace at $150 \pm 4^{\circ}$ where reaction occurred for a timed interval. The mixture was cooled in liquid nitrogen, the tube opened, and the contents analysed directly, or after dissolving in acetone or methylene dichloride.

Analysis.—Product identification was achieved by coupled g.l.c.-mass spectrometry of the reaction mixture using a Pye 104 gas chromatograph with 15 ft columns of 10% w/w Embaphase silicone oil, 15% dinonyl phthalate, or 15% tritolyl phosphate on Chromosorb G, coupled via a single stage Bieman separator to an A.E.I. MS902 mass spectrometer. The mass spectra of the adducts are given in Supplementary Publication No. SUP 21538 (6 pp.).* Wherever possible products were then separated by preparative g.l.c. on a Pye 105 instrument.

¹H and ¹⁹F n.m.r. spectra were recorded on the products at room temperature using CCl_4 solutions in microcells containing traces of Me_4Si and CCl_3F as internal standards. A Varian HA-100 instrument was employed, and in several instances the time-averaging facility was used.

Quantitative analysis was achieved using Griffin and George gas density balance chromatographs employing the same columns as in the mass spectral analyses. Peak areas were measured with a DuPont 310 curve resolver. Most reactions were run in duplicate as a check on the consistency of the results and the analysis figures are average values estimated to be accurate to within $\pm 5\%$.

Reaction of Chloroiodomethane with Ethylene.—Chloroiodomethane (6.1 mmol), ethylene (3.6 mmol), and di-t-butyl peroxide (0.064 mmol) were reacted at 150° for 16 h. Five products were observed on the g.l.c. trace: peak 1, CH₃-COCH₃ (structure established by m.s. and retention time R_t); peak 2, CH₃I (m.s., R_t); peak 3, CH₂ClCH₂Cl (m.s., R_t); peak 4, ClCH₂CH₂I (m.s.); peak 5 CH₂ClCH₂CH₂I (m.s.). Traces of CH₃Cl were also detected. The relative yields of the products are given in Table 1.

Reaction of Chloroiodomethane with Vinyl Fluoride.-Chloroiodomethane (5.9 mmol), vinyl fluoride (3.6 mmol), and di-t-butyl peroxide (0.064 mmol) were reacted at 150° for 12 h. Six products were observed on the g.l.c. trace: peak 1, CH_3COCH_3 (m.s., R_t); peak 2, CH_3I (m.s., R_t); peak 3, CH_2ClCH_2Cl (m.s., R_i); peak 4, C_2H_3FClI (m.s.); peak 5, CH₂ClCH₂CHFI (m.s., n.m.r.); peak 6, CH₂ClCHF-CH₂I (m.s., n.m.r.). The structure CH₂ClCH_cH_bCH_aF for peak 5 was confirmed by the ¹H n.m.r. spectrum, δ 2.5-3.1 (2 H, m), 3.4–3.8 (2 H, m), and 6.95 (1 H, dt, J_{H_aF} 50.0, $J_{H_aH_b} = J_{H_aH_c} = 6.5$ Hz), and by the ¹⁹F n.m.r. spectrum, ϕ 143.6 (8 lines, $J_{\rm FHa}$ 50.0, $J_{\rm FHb}$ 21.5, $J_{\rm FHc}$ 15.0 Hz). The structure CH₂ClCH_aFCH₂I for peak 6 was confirmed by the ¹H n.m.r. spectrum δ 3.6 (4 H, ca. 8 lines, $J_{\rm CH_2CI,H_a} \approx$ $J_{\rm CH_2, I, H_a} = 15.5$, $J_{\rm CH_2Cl, F} \approx J_{\rm OH_2I, F} = 17.5$ Hz) and 4.58 (1 H, d quintet, $J_{\text{H}_{a}\text{F}}$ 46.2, $J_{\text{H}_{a}}$, $_{\text{CH}_{2}\text{Cl}} = J_{\text{H}_{a}\text{CH}_{2}\text{I}} = 5.5$ Hz), and by the ¹⁹F n.m.r. spectrum, ϕ 170.2 (d quintet, $J_{\rm FH_a}$ 46.2, $J_{F_{aCH,Cl}} = J_{F_{aCH,I}} = 17.5$ Hz). The relative yields of the products are given in Table 1; traces of CH₃Cl were also detected.

Reaction of Chloroiodomethane with 1,1-Difluoroethylene. Chloroiodomethane (5.4 mmol), 1,1-difluoroethylene (3.6 mmol), and di-t-butyl peroxide (0.064 mmol) were reacted at 150° for 16 h. Six products were observed on the g.l.c. trace: peak 1, CH₃COCH₃ (m.s., R_t); peak 2, CH₃I (m.s., R_t); peak 3, CH₂ClCH₂Cl (m.s., R_t); peak 4, CH₂ClCH₂-CF₂I (m.s., n.m.r.); peak 5, CH₂ClCF₂CH₂I (m.s., n.m.r.); peak 6, CH₂Cl(CH₂CF₂)₂I (m.s.). The ¹H n.m.r. spectrum confirmed structure for peak 4 & 2.6—3.1 (2 H, m), and 3.65 (2 H, t, J 8.0 Hz), as did the ¹⁹F n.m.r. spectrum, ϕ 37.9 (t, J 14.2 Hz). The ¹H n.m.r. spectrum (time averaged) for peak 5 confirmed the structure, & 3.9 (2 H, t, J 13.5 Hz) and 4.2 (2 H, t, J 11.0 Hz). Traces of CH₃Cl and C₂H₂F₂ClI were also identified.

Reaction of Chloroiodomethane with Trifluoroethylene.-Chloroiodomethane (6.0 mmol), trifluoroethylene (3.6 mmol), and di-t-butyl peroxide (0.064 mmol) were reacted at 150° for 16 h. The g.l.c. trace showed seven products: peak 1, CH_3COCH_3 (m.s., R_t); peak 2, CH_3I (m.s., R_t); peak 3, CH_2CICH_2CI (m.s., R_t); peak 4, $CH_2CICHFCF_2I$ (m.s., n.m.r.); peak 5, CH_2CICF_2CHFI (m.s., n.m.r.); peak 6 and 7 were 2:1 telomers CH₂Cl(CHFCF₂)₂I. The ¹H n.m.r. spectrum confirms the structure CH₂ClCHF_aCF_bF_cI for peak 4, δ 3.6–3.9 (2 H, m), δ 4.5 (1 H, dd quartet, J_{HFa} 48.0, $J_{\rm HFb}$ 3.0, $J_{\rm HFc} = J_{\rm HH} = 8.5$ Hz), as did the ¹⁹F n.m.r. spectrum, ϕ 184.4 (m) and 54.5 (AB, each component 4 lines, $J_{\rm F_bF_c} = J_{\rm F_cF_b} = 198.5, \ J_{\rm F_bF_a} \ 21.0, \ J_{\rm F_bH} \ 7.5, \ J_{\rm F_cF_a} \ 22.0,$ $J_{\rm F_{c}H}$ 8.5 Hz). The ¹H n.m.r. spectrum confirmed the structure $CH_2ClCF_bF_cCHF_aI$, δ 3.9 (2 H, t, further split, J 12.5 Hz) and 7.0 (1 H, 8 lines, $J_{\rm HFa}$ 47.5, $J_{\rm HFb}$ 11.0, $J_{\rm HFc}$ 8.5 Hz), as did the ¹⁹F n.m.r. spectrum, ϕ 166.3 (dt, $J_{F_{aH}}$ 47.0, $J_{F_{a}F_{b}} = J_{F_{a}F_{c}} = 21.5 \text{ Hz}$ and 109.3 (m).

Reaction of Chloroiodomethane with Tetrafluoroethylene. Chloroiodomethane (6.1 mmol), tetrafluoroethylene (3.6 mmol), and di-t-butyl peroxide (0.064 mmol) were reacted at 150° for 18 h. The product was dissolved in acetone and on

⁹ J. P. Kilkoyne and K. R. Jennings, J.C.S. Faraday I, 1974, 379.

^{*} For details of Supplementary Publications see Notice to Authors No. 7 in J.C.S. Perkin II, 1975, Index issue. Items less than 10 pp. are supplied as full-size copies.

1976

analysis showed 10 peaks (acetone was probably also a product): peak 1, CH₃I (m.s., R_t); peak 2, CH₂ClCF₂CF₂I (m.s.); peak 3, CH₂Cl(CF₂CF₂)₂I; peak 4, H(CF₂CF₂)₂-CHCl(CF₂CF₂)I (m.s.); peak 5, CH₂Cl(CF₂CF₂)₃I (m.s.); peak 6, H(CF₂CF₂)₂CHCl(CF₂CF₂)₂I (m.s.); peak 7, CH₂Cl[CF₂CF₂]₄I (m.s.); peak 8, CH₂Cl[CF₂CF₂]₅I (R_t); peak 9, CH₂Cl[CF₂CF₂]₆I; peak 10 CH₂Cl[CF₂CF₂]₇I. A plot of log R_t against carbon number was found to be linear for the first four members of the series of telomers CH₂Cl[CF₂CF₂]_nI which were positively identified from their mass spectra. The last three members of this series, *i.e.* n = 5—7 were too weak for mass spectral analysis, but comparison of their retention times with the correlation established for the first four provided good confirmation of their structures.

Reaction of Chloroiodomethane with Hexafluoropropene. Chloroiodomethane (5.6 mmol), hexafluoropropene (3.6 mmol), and di-t-butyl peroxide (0.064 mmol) were reacted at 150° for 16 h. Seven products were observed: peak 1, CH₃COCH₃ (m.s., R_t); peak 2, CH₃I (m.s., R_t); peak 3, CF₃CFCICF₂I (m.s.); peak 4, CF₃CFICF₂CI (m.s.); peak 5, CH₂CICH₂Cl (m.s., R_t); peak 6, CH₂CICF(CF₃)CF₂I (m.s.); peak 7, CH₂CICF₂CFICF₃ (m.s., n.m.r.). The ¹H n.m.r. spectrum of peak 7 showed a signal at δ 3.8—4.3 (m); the ¹⁹F n.m.r. spectrum supported the structure CH₂CICF₄F_b-CF₆ICF₃, ϕ 143.7 (m), 105.6 (AB, each component a multiplet which simplified to a quartet on spin decoupling the CF₃ group, J 15.5 Hz), and 73.6 (six lines, $J_{CF_3F_6} = J_{CF_3F_6} = 12.2$, $J_{CF_3F_6} = 3.0$ Hz).

Reaction of Bromotrichloromethane with Hexafluoropropene. —Bromotrichloromethane (5.7 mmol), hexafluoropropene (3.6 mmol), and di-t-butyl peroxide (0.064 mmol) were reacted at 150° for 16 h. The following products were observed: peak 1, CH₃Br (m.s.); peak 2, CH₃COCH₃ (m.s., R_t); peak 3, CF₃CFBrCF₂Br (m.s.); peak 4, CCl₃CF₂CFBrCF₃ (m.s., n.m.r.); peak 5, C₂Cl₆ (m.s., R_t). CHCl₃ and CH₃-COCH₂Br were also observed. Analysis on several columns of differing polarity showed only one adduct, and this was separated by preparative g.l.c. and the ¹⁹F n.m.r. spectrum confirmed the structure CCl₃CF₆F_bCF_aBrCF₃, ϕ 133.3 (F_a, m), 104.7 (F_b, 16 lines, $J_{F_bF_b}$ 254, $J_{F_bF_a}$ 18.5, $J_{F_bF_a}$ 7.5 Hz), 93.0 (F_c, 10 lines, $J_{F_cF_b}$ 254, $J_{F_cF_a} = J_{F_cF_a} = 7.5$ Hz), and 76.0 (F_a, 8 lines, $J_{F_aF_b}$ 18.5, $J_{F_aF_c}$ 7.5, $J_{F_aF_a}$ 9.5 Hz). No signals attributable to the reverse adduct, CCl₃CF(CF₃)CF₂Br, were detected.

Reaction of Di-iodomethane with Alkenes.—Di-iodomethane (3.7 mmol), the alkene (3.6 mmol), and di-t-butyl peroxide (0.064 mmol) were reacted at 150° for 18 h. A second experiment was carried out for each alkene in which ethylene (0.51 mmol) was added as a reference olefin. Acetone and methyl iodide were identified as products in each reaction, but were not quantitatively analysed.

Vinyl fluoride. Two compounds were observed and were shown by m.s. to be 1:1 adducts $C_3H_5Fl_2$, but they could not be separated by g.l.c. on a variety of columns of different polarity. In the reaction with added ethylene the adduct $CH_2ICH_2CH_2I$ was identified together with a cross-telomer, $C_5H_9FI_2$.

1,1-Difluoroethylene. Acetone and methyl iodide were identified together with $CH_2ICH_2CF_2I$ (m.s.) and CH_2ICF_2 -CH₂I (m.s.). In the runs with added ethylene considerable amounts of telomers $C_5H_8F_2I_2$ were also observed.

Trifluoroethylene. $CH_2ICH_aFCF_2I$ was identified by m.s. and the structure confirmed by the ¹H n.m.r. spectrum which was very similar to that of $CH_2ClCHFCF_2I$, $\delta 2.5$ —3.1 (2 H, m) and 3.7 (1 H, m). $CH_2ICF_bF_cCHF_aI$ was identified by m.s. and the structure confirmed by the ¹H n.m.r. spectrum (very similar to that of CH_2ClCF_2CHFI), $\delta 3.95$ (2 H, t, J 13 Hz) and 7.15 (1 H, dt, J_{HFa} 46, $J_{HFb} = J_{HFc} = 8.5$ Hz). In the run with added ethylene considerable quantities of 2:1 telomers $C_5H_7F_3I_2$ were observed.

Tetrafluoroethylene. Reactions in the presence and absence of ethylene resulted in a solid mass of polymer which was not further analysed.

Hexafluoropropene. The two 1:1 adducts $CH_2ICF(CF_3)$ -CF₂I (m.s.) and $CH_2ICF_2CFICF_3$ (m.s.) were identified together with a third product $C_4H_3F_6I_2$.

[5/1146 Received, 12th June, 1975]